
Adaptive Global Power Optimization for Web Servers

Leonardo Piga1, Reinaldo A. Bergamaschi1, Mauricio Breternitz2, and
Sandro Rigo1

1Institute of Computing, University of Campinas UNICAMP , Av. Albert
Einstein, 1251 - Cidade Universitaria, 13083-852 , Campinas, SP Brazil ,

{lpiga,rberga,sandro}@ic.unicamp.br
2Advanced Micro Devices , 7171 Southwest Pkwy 78735 , Austin, TX -

USA , Mauricio.Breternitz@amd.com

Author version of the work published in Journal of Supercomputing
Published online: 11 March 2014

DOI 10.1007/s11227-014-1141-x

Abstract

This work investigates power and performance trade-offs for Web Servers on a
state-of-the-art, high-density, power-efficient SeaMicro SM15k cluster by AMD. We
relied on the concept of Virtual Power States, a combination of CPU utilization rate
to the P/C power states available in modern processors, and on our global optimiza-
tion algorithm called Slack Recovery, to deploy an adaptive global power manage-
ment system in a production environment. The main contributions of this paper are
twofold. First, it presents the Slack Recovery algorithm deployed on a real cluster,
composed of 25 SeaMicro nodes. The algorithm finds a P-state and a utilization rate
for each CPU node in order to minimize power under a minimum performance re-
quirement. Second, it proposes a novel mechanism to control utilization rates in each
server, a key aspect on our power/performance optimization system which enables
the implementation of the Virtual Power States concept in practice. Experimental re-
sults show that our Slack Recovery-based system can reduce up to 6.7% of the power
consumption when compared to policies usually deployed in SeaMicro production
systems.

1 Introduction

The shift towards increasing demand in computational resources has forced companies to
build facilities hosting hundreds of thousands of computers called data centers. A vari-
ety of services, from search (e.g. Google and Yahoo), to e-commerce (e.g. Amazon and
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e-Bay), to stock trading (e.g. Fidelity and e-Trade) and media streaming (e.g. YouTube)
rely on the computing capabilities of data centers. This comes at a price of higher opera-
tional costs which include the management of these installations, the electricity costs, and
environmental impacts due to the increased power consumption.

The power associated with the IT equipment in a data center includes the power of the
servers, the power required by the cooling, and auxiliary equipment (e.g. power distribution
units, switching, back up power). The power consumption of the actual server drives the
power needs for auxiliary equipment and cooling; thus, reducing server power has a direct
effect on reducing data center power as a whole. Futhermore, saving energy implies in
reducing costs as the total cost of ownership of a data center is proportional to its power
consumption.

Data-centers efficiency can be measured using a metric called Power Usage Effective-
ness (PUE), which is calculated by dividing the total electric power used in a facility by
the power brought to the computing units (e.g. computers, networking equipment). In
2009, Schulz claimed that 50% of electrical power was spent on cooling in a typical data
center [31]. By 2006 the PUE of 85% of data centers was about 2, that is, for each watt
used for computation other additional two watts were spent by cooling and auxiliary equip-
ments [24]. By the end of 2010, Google’s data centers achieved an overall PUE of 1.1 [30],
a huge improvement.

In 2005, the energy consumption of total servers corresponded to about 0.6% of total
electricity consumed in the USA. If auxiliary equipment was taken into account, this share
increases to 1.2% [20]. In 2010, the electricity used in US data centers accounted for
between 1.7 and 2.2% of total electricity use [21].

In this context, power-aware computing has emerged as a concern in data centers and,
in this article, we follow-up on the work introduced in Bergamaschi et al. [4], which pre-
sented the theoretical concept of Virtual Power States (VPS), a combination of utilization
rate to the P/C power states available in modern processors, and the Slack-Recovery
Algorithm. Now, we develop power optimization techniques that can show significant im-
provements over best-of-breed, production-level dense data centers, using the latest CPU
architectures. We deploy them to a modern cluster architecture composed of 25 nodes of
SeaMicro servers [3], a state-of-the-art server architecture by AMD. In order to do this, we
develop a novel mechanism to control utilization rates in each server, a key aspect for our
power/performance optimization heuristic.

The main focus of this article is to show how a Slack Recovery-based system can be
deployed in practice using a production, state-of-the-art, SeaMicro SM15k cluster, instead
of simulation. It shows how a utilization rate control mechanism can be integrated to
such a system. We compare our result to policies usually deployed in SeaMicro production
systems (i.e., the Linux governors [7, 26]). The reader may find more details about the
optimization problem in our previous work [4]. To the best of our knowledge, this is the
first work to implement and evaluate power/performance optimization algorithms in such
high-density cluster architectures (e.g., the SeaMicro SM15k). We believe the results are
general and applicable to a wide range of data center architectures.

This paper is organized as follows: Section 2 presents the related work and highlights the
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main differences of our work. Section 3 gives an overview of the SeaMicro cluster architec-
ture used in this work; Section 4 introduce basic concepts on CPU power and performance
trade-offs. Section 5 presents the overall organization of our approach and describes our
experimental methodology, including the benchmarks used and the algorithms. Section 6
explains how the theoretical concept of Virtual Power State (VPS) are deployed in the
cluster. Section 7 presents the results and, finally, Section 8 draws our conclusions.

2 Related Work

Over the last decade there have been several research approaches tackling the problem of
power and performance trade-off and optimization in processors and data centers. Most
of these works presented algorithms for either turning processors on and off, or applying
dynamic voltage and frequency scaling (DVFS). We split the related work into six categories
that are explained next.

Server Provision: Filani et al. [15] used a closed-loop control algorithm to perform
power management, by acting on processor states and memory, in order to comply with
certain policy directives dictated by the upper level software. Their work focuses on in-
creasing the compute density by changing the server provision policy.

Performance Optimizations under a Power Cap: Other works intend to maximize
performance given a power cap. Rajamani and Lefurgy [28] investigated the problem of
scheduling service requests among servers in a cluster in order to minimize energy con-
sumption known as Power-Aware Energy Distribution (PARD). The authors evaluated the
influence of the system-workload context on energy-saving schemes using a simple on/off
model for estimating the energy consumption of the cluster. In Chen et al. [9], on/off node
optimizations were applied in a multiple-application data center. The goal was to deter-
mine how many servers and their operation frequencies should be used for each application.
All servers ran the same application at the same frequency.

Kant et al. [19] developed a simple task model based on QoS requirements and presented
Willow, a simple adaptative control scheme for energy-adaptive computing (EAC) that
considered power and thermal constraints simultaneously. They discussed three scenarios
for applying their model: 1) Cluster EAC, where clients submit requests that required
significant computation on the cluster side; 2) Client-Server EAC, where observing QoS was
an important requirement; and 3) Peer-to-Peer EAC, where devices changed information
through a network.

Winter et al. [35] presented scheduling and power management algorithms for heterege-
neous many-core architectures. Cochran et al. [10] presented a control techinique to choose
CPU voltage and frequency states in an optimal way in order to maximize performance
under a power budget. Shen et al. [32] developed an operating system feature that enabled
request level power management. Meisner et al. [25] evaluated the effects of switching
CPU states to idle states for a short period of time on online data-intensive services (e.g.
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web search). The problem was more complicated than other Web workloads, since it re-
quired fast response time and the data were distributed across the nodes unabling nodes
shutdown.

Microarchtectural Power Optimizations: The in-core power management algorithms
in Isci et al. [18] dynamically control the processor parameters (frequency, voltage and fetch
throttling) in order to optimize power and/or performance according to on-the-fly work-
loads. They report up to 38% of power savings with 17.7% in performance degradation.

Leverich et al. [23] point that per-core power gating can be used as an additional
mechanism on multi-core porcessors. They show that by using their technique they can
reduce energy consumption in up to 40% maintaining the same performance level. They
also combined DVFS and per-core power gating and reported energy savings of almost
60%.

Local Optimizations: Linux has some built-in performance and power algorithms,
which are readily available on Linux and used in production systems. For this reason,
we consider them as a good baseline to our technique. One of them is performance gov-
ernor [7], where the CPU frequency is kept at the maximum when the CPU is executing
any instruction. When in idle, it is automatically put in power-safe states (also known as
C-States) by the CPU hardware [29].

Other algorithm is the Linux ondemand governor [7, 26]. The governor samples the
CPU usage at small intervals (typically 10ms) and decides which frequency to set the CPU
based on its utilization rate. When the CPU utilization rate is greater than the threshold
(typically 95%) in an interval, the core frequency is set to the maximum frequency. When
the utilization is lower than the threshold, the core frequency is adjust to a frequency state
that is able to keep the CPU utilization rate at 80%.

Server Level Optimizations: A survey of power management techniques developed
to explore and optimize the power/performance trade-off in data centers can be found in
Bianchini and Rajamony [6].

The work in Chase et al. [8] developed an agent-based approach, implemented in the
middleware, to turn off servers under low-load conditions while maintaining the expected
(or contracted) Service Level Agreements (SLAs). Their approach is based on turning
servers on and off and distributing the work among the powered-up servers. They could
reduce energy in up to 29% for a Web workload from the 2000s.

In Kusic et al. [22], dynamic resource provisioning is used in a virtualized computing
environment to reduce power consumption while maintaining SLA. This work accounts
for the switching costs incurred while provisioning (turning on/off) virtual machines and
explicitly encodes the corresponding risk in the optimization problem. They report 26%
of power savings.

In Elnozahy et al. [12], five cluster-wide power management policies are evaluated. The
authors apply DVFS and node on/off techniques to reduce power consumption during
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periods of reduced workload. The policies assume that the workload is balanced across
cluster nodes. Policies include: independent voltage scaling, where each node manages
its own power consumption; coordinated nodes’ voltage scaling actions; turning nodes
on/off so the minimum number of servers required by the workload is kept active; and
combinations of these techniques. The authors concluded that between 33% and 50% of
cluster energy can be saved by applying the combined policy, when compared to a cluster
that is not power managed.

In their follow up research [13], the authors use DVFS and request batching (where
the servicing of incoming packets is delayed until a specified batching timeout is reached)
management mechanisms to propose three policies to reduce energy consumption in Web
servers. They show that DVFS is better suited for moderately intense workloads, while
batching is better for low-intensity workloads. They also propose a combined policy that
reaches 17% to 42% energy savings in all workloads, compared to a base model with no
optimization. A feedback-driven control framework is used to adjust policy parameters.

Bertini et al. [5] present an optimal linear programming-based solution to the problem
of dynamic cluster configuration combined with the use of feedback control theory to
control the QoS (Quality of Service) and dynamically select which servers turn on/off or
their operating frequencies. Two control theory schemes are compared, single-input single-
output (SISO) controller and single-input multiple-output (SIMO) controller. The authors
show that the SISO approach does not scale as an online solution, so they apply a table-
based offline solution. On the other hand, the SIMO approach runs with N-independent
controllers, at a cost of loss of optimality. They report 40% in power reduction.

Abbasi et al. [2] propose TACOMA (two-tier architecture for cooling-computing energy
managements), a two-tier Internet data center scheme. The first tier adjusts the number of
active servers; the second tier predicts the workload arrival rate. The algorithm evaluation
is based on web traces and they reported energy savings of up to 40% considering compute
and cooling power.

Several of these works reported significant savings (30% or more). Their contributions
were undoubtedly relevant for the CPU architectures and data center power management
techniques at the time. However, the state-of-the-art today is very different. CPU power
(both active and idle) in modern architectures (e.g., Intel Ivy Bridge) is considerably lower
than it was 5 years ago; thus, reducing significantly the gains that simple On/Off or DVFS
techniques can achieve.

The approach in Bergamaschi et al. [4] used a simulation model of a data center to
evaluate the algorithms. Several practical implementation aspects are simplified in a sim-
ulation environment. In this work, we implemented everything in an actual cluster; thus,
demonstrating not only that the approach is scalable, but can achieve significant savings
even considering the extremely power-efficient baseline starting point, such as the SeaMicro
cluster using Intel’s Xeon processors (Ivy Bridge architecture), running Linux ondemand
governor power management.
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3 SeaMicro Cluster Overview

We deploy our Power and Performance Optimizations on an AMD’s SeaMicro SM15000
(Figure 1(a)) family of Fabric Compute Systems (SM15k) [3]. The SM15k is a high-
density cluster composed of compute nodes, networking, and storage on a single 10 Rack
Unit (RU). This system amortizes the power overhead of fixed system components such as
power supplies and fans among the cluster by sharing them among the cluster nodes. Our
SM15k has 64 server cards and consumes between 3.0 kW and 3.5 kW.

A server card is logically described in Figure 1(b). Each server card is composed of
DRAM, CPU+Chipset, and the Freedom ASIC. The latter includes network interfaces,
which removes the need of network adapters, cables, and switches, resulting in a high-
density and energy efficient cluster. It also implements an I/O virtualization technology,
which virtualizes the disks to the server nodes. Each node accesses the disk as a virtual
SATA disk. This feature reduces power and space without requiring any special software
and driver. In our configuration, we used server cards composed of one Intel Xeon E3-
1265Lv2 processor, 32 GB ECC DRAM, 8x1Gbit network interface card, connected with
one virtual SATA disk. Each virtual disk was assigned to one physical disk.

source: http://www.seamicro.com

(a) SM15k front picture

Motherboard

DRAMDRAM

CPU +
Chipset

Seamicro
Freedom ASIC

DRAMDRAM

DRAMDRAM

DRAMDRAM

(b) Freedom based motherboard

Figure 1: AMD’s SeaMicro SM15000 family of Fabric Compute Systems

The Freedom ASIC enables interconnection of servers in a 3D-torus topology with
1.28 Tbit bandwidth and less than 6µs communication delay between any two server nodes.
Our SeaMicro SM15k processors are from the Intel Ivy Bridge family, and feature special
registers that provide estimates to the CPU power consumption. We took advantage of
the fast interconnection and the embedded power estimators when implementing our power
and performance optimization algorithms.
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4 Background on Power and Performance Trade-offs

In our previous work [4], we used Integer Linear programming (ILP) to find an optimal
solution to the problem of minimizing power by selecting discrete frequencies and voltage
levels (P-states) while maintaining performance above a minimum threshold. This ap-
proach, however, did not scale for large number of nodes, because of the complexity of the
ILP problem. To overcome this limitation, we also developed a heuristic algorithm called
Slack Recovery and implemented it on the simulation environment.

In this work, we took the Slack Recovery algorithm and adapted it to a real cluster
environment. We used it to select the P-states in each CPU node in order to optimize the
overall web server cluster power, while satisfying a given level of total performance (i.e., a
performance threshold).

Current processor cores, such as the Intel Xeon E3-1265Lv2, have internal mechanisms
in hardware and firmware to change its P/C-state according to its load and power. Accord-
ing to ACPI tables found in operating systems, Intel Xeon E3-1265Lv2 has 11 P-states, or
11 different levels of frequency and voltage.

In our implementation, we are considering only the CPU power, since it is the most
important share of the power consumption. Moreover, it is the only device in our system
that provides mechanisms to trade-off power and performance, such as DVFS. We based
our choice on a characterization of web servers done previously, which found that disk,
memory, and network power components do not vary too much comparing to the CPU
when a Web Server workload is running; therefore, they can be considered as a constant
value [27] for the purpose of power optimizations. These findings are also corroborated by
Economou et al. [11] who showed that disk, network, disk, and memory have about the
same power consumption when running Web applications (i.e., SPECweb) and when in
idle.

In the SeaMicro environment, the disk and the network cards are virtualized. This
means that they are shared by computing nodes using the SeaMicro ASIC, which amortizes
their share of the total power. Power supplies and fans are also shared. As a result,
their power component is lower than on regular servers. Even though memory power is
an important component with a share of 20% to 25% server power consumption, power
reduction on DRAM has been targeted only on the DRAM device or compute system (e.g.,
reduce refresh rate and refresh power) [34] lacking power aware mechanisms, such as DVFS,
whose Slack Recovery is based on.

Intel Xeon E3-1265Lv2 processors feature RAPL (Running Average Power Limit) in-
terfaces [17, 29] which, among other capabilities, provide a power metering interface. We
developed a Linux kernel module that reads these power registers and provides a power
estimate for the CPU. According to Hackenberg et al. [16], RAPL interfaces are suitable
for low resolution power consumption measurements, which is the case of this paper.

Our performance metric is billions-of-instructions-per-second (BIPS). We developed
an additional piece of software that uses libpfm-4.3 [1], to monitor the CPU performance
counters, allowing the measurement of number of instructions executed as well as user,
system, I/O, and idle times.
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In our optimization problem, we observed that the CPU presents different power con-
sumption and different performance levels (measured in BIPS), under different utilization
rates. We define utilization rate as the ratio of the time that the CPU is doing useful
work (i.e., the CPU is not in idle mode) over the total amount of time in the observation
window.

We characterized one server node of our SeaMicro SM15k when running the Olio bench-
mark in order to derive the pareto frontier shown in Figure 2. We set all CPU cores to a
given P-state and ran the benchmark for an increasing number of concurrent users until
we found a number of users that makes the CPU operate at 100% of utilization. At this
point, we ran the benchmark measuring power and instructions to determine the BIPS
at maximum utilization rate and power at maximum utilization rate for each P-State. We
measured the power at idle for all P-States in order to obtain the idle power ratio. For
this CPU, the idle power is around 7.3W for all P-States.
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Figure 2: Pareto frontier of P-States Intel Xeon E3-1265Lv2

To better understand Figure 2, consider a performance level of ten BIPS. This re-
quirement can be achieved in five different configurations consuming from 16.7 W to 22 W
as follows: P4-state under 100% utilization rate, P3-state under 95% utilization rate, P2-
state under 91% utilization rate, P1-state under 86% utilization rate, and P0-state under
77% utilization rate.

This observation leads us to add the utilization rate as an extra dimension to the
optimization problem. Therefore, our problem is to find a P-state and a utilization rate
for each CPU that minimizes power under a minimum performance requirement.

In Figure 2, we derived an envelope curve, which is the Pareto Frontier of states. A
point in the Pareto Frontier will provide the power consumption and the performance of
the CPU under a P-state and a utilization rate. Moreover, there is no other state and
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utilization rate that would result in higher performance or lower power. The union of the
Pareto Frontier states and the idle C-states constitute the set of VPS for a core. These
Virtual Power States are the states used by our optimization algorithm.

5 Experimental Methodology

We organized our system as follows: a Web Server Cluster, which handles HTTP requests,
and a power manager and load-balancer node that configures the cluster to an optimal
power state and distributes the load accordingly, as illustrated in Figure 3. Each Web
Server is composed of a back-end that runs MySQL 5.5.20 and a front-end that executes
the Nginx 1.0.10 web server with PHP 5.3.5. The back-end and the front-end run on the
same node in order to fully utilize the CPU. The Web Server application is the CloudSuite
Web Server benchmark [14] running Olio, a Web 2.0 web-based social calendar. The power
manager is the implementation of the power and performance policy (e.g., Slack Recovery,
Linux ondemand governor). The load-balancer is the HAProxy 1.5 [33], which is a fast,
reliable, and open-source proxy solution.

Web Server Nodes

Sensor data
Pwr(k)
Perf(k)

T(k)

Olio Users' Requests

Actuators
Virtual Power State(k)

Workload(k)

Power Manager
and Load Balancer

Figure 3: High-level description of system organization to deploy our global optimization
algorithm

The Web Server Cluster produces the sensor data, that is, readings of the power and
performance values of each node in the cluster. The manager then takes into account
the power optimization policy and the input workload to determine, on-the-fly, the best
configuration of power states for all CPU nodes (i.e., which CPU node needs to have its
power state or utilization rate changed). It then passes this new configuration information
and the new workload distribution back to the cluster which is then reconfigured while the
workload is running.

9



The reconfiguration process is done in a fixed time window that needs to be tuned to
the variation of the workload. At the same time, it depends on the overall time that it takes
to do the following procedures: 1) gather the power and performance information; 2) run
the algorithm; and 3) configure the new power states and CPU utilization. Assuming that
this computation time is small (in the order of 250 ms for the SeaMicro), the time window
can be driven by the variation on the system workload. Workloads that vary rapidly need
a shorter time window, so the system can reconfigure itself for the new loads. If the overall
workload varies gently, then longer workloads can be used.

In order to recreate a realistic workload stream, we obtained the load distribution over
time for a specific server cluster hosting the chat room from a large Internet provider. This
load is represented in Figure 4, which shows the intra-day variation (for 37 hours) of the
load on the servers (where the load is represented as a percentage of the maximum load sup-
ported by the whole server cluster). We modified CloudSuite Web Server Benchmark [14]
to follow this trend line creating a synthetic load representing the same variation with the
same characteristics and same relative load percentage with respect to each experiment.
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Figure 4: Intra-day variation of the load on the server

The remainder of this section describes our test bed, the software tools used to evaluate
the Slack Recovery implementation on a SM15k, the Slack Recovery algorithm, and the
methodology for predicting performance.

5.1 Scaling-out Web Server Benchmark

We used 63 server nodes configured as follows: 25 nodes running the Web Servers; 37
nodes running as client machines; and one node executing the power manager and the load
balancer.

Although HAProxy is one of the fastest known proxy implementations, its TCP stack
saturated and the Operating System quickly ran out of TCP ports when we made all the
client-server traffic pass through it. Therefore, we had to adapt the benchmark in order
to alleviate the proxy server traffic. This was accomplished by developing a mechanism to
emulate a reconfigurable network switching fabric. In this mechanism, the client requests
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a connection to the proxy (I in Figure 5). The proxy forwards the connection to a server
from the pool, selected based on a weighted round-robin policy (II in Figure 5). During the
next five seconds, the follow-up requests coming from the same client are directly addressed
by the server selected in the first connection call (III in Figure 5). Then, this connecting
process is repeated.

Client Pool Power Manager
and Load Balancer Web Server Pool

(I) (II)

(III)

Figure 5: System configuration to avoid Proxy saturation

On a large data center, it is possible to probe reconfigurable network switching fabrics
that perform load balancing in order to implement our power management technique.
Therefore, our requirements are the provision of a mechanism to change the weights of a
round-robin load balancer and a metric that reports the amount of traffic redirected for
each server.

5.2 Slack Recovery Algorithm

This section describes the Slack Recovery algorithm, which performs global power opti-
mization. It was introduced in our previous work [4]. This heuristic algorithm is based
on the idea of slack recovery (in power) to determine a near optimal solution. At first,
it assigns power states to all CPU nodes to a state of the largest slack possible, that is,
they are set to the highest performance virtual state, so there will be performance slack to
be exchanged for power. In this case, the algorithm will switch the states of certain CPU
nodes to decrease power and consequently lowering performance up to a threshold.

The algorithm runs over a cluster model to find the optimal configuration and at the end
it assigns the VPS to the physical cluster. The cluster model is a set of node models, which
are implementations of the Pareto Frontier described in Section 4. The implementation
needs a model because it requires the estimation of power consumption and performance
for different configurations. The model also reduces significantly the number of virtual
state transitions.

For the sake of completeness in this text, we present the basic steps of the Slack Re-
covery algorithm. For further details, the reader should refer to Bergamaschi et al [4].
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1 bool SlackRecoveryPerNode :: minimizePower(

2 f l o a t minBIPS , f l o a t powerCap ,

3 f l o a t actualPower , f l o a t actualBIPS) {

4

5 i f (! findInitialStateOnMinimizePower(minBIPS ,currPower ,currBIPS ))

6 r e tu rn f a l s e ; // No feasible solution

7

8 // Now we are ready to execute the slack recovery algorithm

9 do {

10 nodeSel = NULL;

11 f o r all nodes n do
12 // There is slack: attempt to decrease power slack by moving

13 // to a lower power/performance state

14 i f (n.getCurrentVirtualState () < NumVirtualStates -1) {

15 // Check if we meet the constraint for the next state

16 bipsChg = currBIPS -

17 provisionBIPS(currBIPS ,n.getCurrentVirtualState (),

18 n.getCurrentVirtualState ()+1);

19 i f (currBIPS - bipsChg >= minBIPS) {

20 // Provision power for the next state

21 nextSttPower =

22 provisionPower(currPower ,

23 n.getCurrentVirtualState (),

24 n.getCurrentVirtualState ()+1);

25 powerChg = currPower - nextSttPower;

26 i f (powerChg > bestPowerChg) {

27 nodeSel = n; // Remember this node

28 bestPowerChg = powerChg;

29 bestBipsChg = bipsChg;

30 }

31 }

32 }

33 }

34 i f (nodeSel != NULL) {

35 currBIPS = currBIPS - bestBipsChg;

36 nodeSel ->oneStateMoveUp ();

37 }

38 } wh i l e (nodeSel != NULL);

39 // Do the assignment in the actual nodes

40 assignVirtualStates ();

Figure 6: Slack-Recovery Algorithm Pseudo-code

Figure 6 lists the Slack Recovery pseudo-code configured to minimize power given a min-
imum performance. The algorithm starts by finding an initial configuration state (line 5)
that is able to sustain the minimum performance requirement. Next, it executes the slack
routine, where it tries to decrease power by moving to a lower performance state (lines
9 to 38). The routine iterates over all model nodes (lines 11 to 33), checks if the node
could be moved to a higher VPS, which means a state with lower performance and power
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consumption (line 14). The algorithm provisions the performance (lines 16 and 17) in the
cluster model and checks if it is greater than the performance threshold (line 19). If it
satisfies the performance constraint, it provisions power and checks if it is lower than the
minimum configuration so far (lines 22 to 24), storing this node. After iterating over all
nodes, the algorithm moves the selected node (if any) to a higher VPS (lines 34 to 37).
Finally, it assigns the VPS to the actual cluster nodes (line 40).

Example 1: To understand how Slack Recovery compares to the Linux ondemand
governor, consider the following example: Assume a cluster with five web servers composed
of Intel Xeon E3-1265Lv2 processors. The power and performance curve of this CPU is
shown in Figure 2. Suppose that the performance requirement is 54 BIPS. By using these
input parameters to the Slack Recovery algorithm, a configuration described in Table 1 is
returned.

Table 1: Server configuration when Slack Recovery is used
Server A B C D E
P-State P1 P2 P1 P1 P1
Utilization Rate 96 100 95 95 95
Power (W) 18.96 18.43 18.84 18.84 18.84
BIPS 10.97 10.76 10.86 10.86 10.86

The configuration shown in Table 1 is able to sustain a performance of 54 BIPS while
the total power would be 93.9 W.

Figure 7 shows a pseudo-code of the Linux ondemand governor implementation [26].
The algorithm works as follows: On every period of time, typically 10 ms, pool the CPUS
in the system (line 2). If the utilization of the current CPU (line 5) is greater than a
threshold (typically 95%), increases the currenct CPU frequency to the maximum (line 6).
If the current utilization is lesser then the threshold (typically 95%), jumps directly to the
lowest frequency that can sustain a CPU load of 80%.

1 vo id ondemand () {

2 every X milliseconds {

3 f o r cpu in {CPU in the system} {

4 u = utilization_since_last_check(cpu)

5 i f (u > UP_THRESHOLD)

6 increase_freq_to_max(cpu)

7 i f (u < DOWN_THRESHOLD)

8 set_freq_80_perc_busy(cpu)

9 }

10 }

11 }

Figure 7: Linux Ondemand Governor Pseudo-code
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Since the cluster is homogeneous (i.e., servers’ CPUs are all the same), when running
the workload with the Linux ondemand governor, we set the weights of the load balancer
to the same value so that the load distribution among the server follows a round robin
policy. Therfore, all the servers have about the same load in the steady state.

If all servers have tabout the same load, for sustaining 54 BIPS, each server needs
to keep a throughput of 10.8 BIPS. By observing the power and performance curve
(Figure 2), we can see that the only state that can keep the CPU 80% busy, for a given
BIPS of 10.8 is P0. In this state, the CPU power is 23.1 W and the total power for all 5
servers is 115.5 W.

As shown, the Slack Recovery is able to configure the cluster to a performance state
that can sustain 54 BIPS dissipating 93.9 W while the the Linux ondemand governor
dissipates 115 W to the same performance requirement.

5.3 Predicting the Demanded Performance

Slack Recovery configures the cluster in time window Πt to sustain the load that will come
in next time window Πt+1. Therefore, we need to implement a mechanism that predicts
the demanded performance for the next cycle. This performance is estimated based on the
number of sessions opened by the HAProxy, that is, the rate of start connection requests
to the proxy (I in Figure 5) per second. On a big cluster, the session rate could be read
from the network switching fabric and this number could be translated to the performance
metric (i.e., BIPS).

Let’s define session rate as the average number of sessions opened per time window.
Differently from any microarchitectural performance metrics (e.g., BIPS), the session
rate will always increase proportionally to the load even if some nodes are saturated (i.e.,
operating at a 100% utilization rate). Figure 8 shows the relation of session rate to BIPS
for different benchmark loads (i.e., number of users). We can see that, even if the cluster
is saturated, the session rate increases while BIPS tends to be constant at the maximum
utilization. We computed a linear regression of the points at which the benchmark passes
(i.e., the cluster is not saturated) to translate a given session rate into BIPS.
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Figure 8: Total Cluster BIPS versus HAProxy Requests per Second
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The predictor is developed by using simple linear extrapolation as follows: let Srt−1 be
the session rate in time window Πt−1 and Srt be the session rate in time window Πt. To
estimate the session rate Srt+1 in time window Πt+1, we find a tangent line as by using
Equation 1. Figure 9 illustrates the extrapolation method used by our predictor.
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Figure 9: Variables used to predict the value of the next session rate, Srt+1

Srt+1 = α · (t+ 1− t) + Srt

= α + Srt
(1)

where α is the slope of the line given by Equation 2.

α =
Srt − Srt−1

t− (t− 1)
=

= Srt − Srt−1

(2)

Now replacing Equation 2 in Equation 1, Srt+1 can be calculated as follows:

Srt+1 = alpha+ Srt

= Srt − Srt−1 + Srt

= 2 · Srt − Srt−1

(3)

We also add an estimator error, εt, in order to amortize the prediction errors, calculated
as follows:

εt =

{
0 if t = 0
SrtActual

− SrtPredicted
if t > 0

(4)

Finally, the predicted session rate for the next time window is given by adding Equa-
tion 3 to Equation 4 as follows:
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Srt+1 = 2 · Srt − Srt−1 + εt (5)

The performance prediction is done based on the variation of the system-wide workload.
We empirically observed that the total workload, when measured at discrete time intervals
(i.e., 10 seconds in this work) tends to change smoothly with very few inversions. In
addition, even when the load variation changes direction, the prediction may get it wrong
for one or two intervals at most, before correcting itself.

After having predicted the performance for the next time window Πt+1, we used this
information as an input parameter for Slack Recovery. The algorithm returns a set of VPS
and we set each node to the corresponding virtual power state. The next Section, discusses
the implementation of VPSs in our environment.

6 Virtual Power State Implementation

A Virtual Power State (VPS) is a tuple containing a utilization rate and a P-state. While
one can easily set a node’s P-state; controlling each individual CPU utilization rate is more
difficult. This section discusses our approach to controlling the CPU utilization rate on a
Web Server cluster.

In order to follow the remainder of this section, let’s first define a number of variables
used in the ensuing formulation. Table 2 presents the variables and their corresponding
definitions.

Table 2: Variables used in the remainder of this section
Symbol Definition
k P-state index
s Server index
µ Number of users
χs Number of connected users to the server s
νs Number of new users to the server s
Ψ Utilization rate
Ts,k Target utilization rate for server s running at Pk-state
Ks,k Current utilization rate for server s running at Pk-state
φTs Normalized target utilization rate for server s
φKs Normalized current utilization rate for server s
∆s φTs − φKs

εs Error in number of users
ηs Number of expected users to the next iteration

Each server will handle a certain number of users until a point at which the CPU
utilization rate reaches 100%. Thus, one way to control the CPU utilization is to change
the number of users connected to a server. Figure 10 shows the relation of the users
connected to a server and its corresponding utilization rate for the Olio benchmark when
the server is operating at highest frequency (P0-state). If the server is operating at other
P-states, we normalize the utilization to P0-state using Equation 7 and Equation 8.
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Figure 10: Number of benchmark users (µ) versus utilization rate (Ψ). We use this relation
to estimate the number of users that should be connected to a given server node

The CPU utilization rate (Ψ) could be used to estimate the number of connected users
(µ) to a Web Server using a second order degree polynomial regression by using least square
method from the points in Figure 10, as given in Equation 6.

µ = f(Ψ) = −0.98 + 15.03 ·Ψ− 0.07 ·Ψ2 (6)

As we have shown in Section 5.1, the HAProxy will redirect a benchmark user to a
Web Server following a weighted round-robin policy, and this user-server assignment lasts
5 seconds. So, we can control the number of users that will be redirected to a given machine
by changing the server weight.

Therefore, if we want to reduce the utilization rate of a server (s), we need to reduce
the number of new users (νs) arriving at the server and wait until the number of connected
users (χs) drops, which means that we need to wait until some connected users finish their
requests, entering into the connection phase again (where they request another server to
the proxy). Figure 11 shows the variation of the CPU utilization rate over time when a
server has 800 connected users and we suddenly stop binding new users to it. We can see
that the CPU utilization rate over time can be modeled as a step function, which facilitates
the system modeling.

By using this methodology, we developed a Utilization Control Agent (UCA) to control
the CPU utilization rate of each server on the Web Server Cluster. Figure 12 illustrates
the elements involved in this implementation.

Each server (s) running at Pk-state is assigned to a target utilization rate (Ts,k) by
the Slack Recovery algorithm. The UCA receives from each server (s) its corresponding
current P-state (k) and its current utilization rate (Ks,k). Ts,k and Ks,k are normalized
to P0-state, since the performance at 100% utilization rate is different among P-states.
This is accomplished by using the information in Figure 2, which displays the maximum
performance (BIPS100%) for each P-State. Thus, the UCA calculates the normalized
target utilization rate, (φTs) and the normalized current utilization rate (φKs) as stated
by Equations 7 and 8.
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Figure 11: Behavior of the utilization rate on time when server stops receiving new users
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Figure 12: An overview of the components involved on the implementation of the utilization
controller mechanism

φTs = Ts,k ·
BIPS100%@Pk

BIPS100%@P0

(7)

φKs = Ks,k ·
BIPS100%@Pk

BIPS100%@P0

(8)

We develop a utilization controller as illustrated in Figure 13. The controller box in
this figure is the HAProxy, which will have changed its weights associated to each server.
This will be translated to an increment or decrement to the number of new users. The
number of new users plus the number of connected users will impact the utilization rate.
The measured utilization rate of the server is compared to the target utilization rate and
will be translated to a new weight closing the loop.

Each CPU utilization controller is modeled as a simple feedback control system from
the Modern Control Theory. In such systems, the variable being controlled (i.e., CPU
utilization rate) is measured and fed back to the controller to influence the controlled
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variable. To develop our controller, we first derive equations to describe our system and
check for stability. The relations are described by Figure 10, which shows the behavior of
the CPU utilization when users are added to the system, and by Figure 11, which shows
how the utilization drops when we stop redirecting requests to the system.

Controller Actuator

Load Balancer

Process

Web Server
Target CPU
Utilization

Weight

Control
variable

New Users

Connected
Users

CPU
Utilization

Figure 13: Control loop approach for enforcing a CPU utilization rate

A utilization controller converts φKs to number of connected users (χs) as follows:

χs = f(φKs) ,where f is given by Equation 6

Let ∆s be the difference between the normalized target utilization rate and the nor-
malized current utilization rate as follows:

∆s = φTs − φKs

The error in number of users (εs) is calculated using the absolute value of ∆s as follows:

εs = f(|∆s|) ,where f is given by Equation 6

A ∆s greater than zero means εs users must be added to the server s, in order to make
it reach the target utilization rate. Otherwise, εs users must be removed from the server.
Therefore, the number of expected users to the next iteration (ηs) on the s server is given
by Equation 9.

ηs =

{
χs − εs if ∆s < 0
χs + εs if ∆s ≥ 0

(9)

The HAProxy allows weights from 0 to 254; thus, the UCA converts each ηs to a
HAProxy weight ws as follows:

ws = round

(
ηs

max(η)
· 254

)
In order to evaluate the utilization control mechanism, we set up a small cluster com-

posed of 5 servers. We configured the benchmark to generate a fixed input load that would
be sufficient to keep the servers’ utilization at their respective utilization rate targets. Our
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problem is to distribute the load across the servers by adjusting the load balancer weights
in order to keep the servers’ utilization rate at their respective targets. The controller
will adjust the HAProxy weights in order to keep the utilization rates at their targets.
Figure 14 shows the behavior of the utilization along 100 seconds for a fixed load.
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Figure 14: Evaluation of the utilization controller mechanism for a fixed load. We see that
the controller is able to place the servers at the target utilization

The controller exhibits some variation around the target utilization rate because UCA is
based on the number of users, but an user can do different types of operations. For example,
an operation of adding a person uses more CPU than a logout operation. However, on the
average the utilization rates converge to the targets as shown in the dotted lines.

7 Experimental Results

This section shows the evaluation of our power management mechanism in two different
scenarios: Constant number of users and Variable Number of Users, where we configured
the benchmark to follow the trend line described in Figure 4.

We compared our mechanism to to policies usually deployed in SeaMicro production
systems, that is, the Linux performance governor, where the P-state is kept at maximum
frequency when the CPU is executing, and to the Linux ondemand governor, where the
operating system changes the frequency automatically.

We also evaluated a theoretical lower-bound for our Slack Recovery heuristic, by con-
sidering that at idle the CPU would not consume any energy. This limit is the minimum
power consumption on a hypothetical environment where the power in idle (i.e., at 0%
of utilization rate) is zero and where we can turn on/off the idle CPUs instantly (i.e., in
zero time). This is a hypothetical environment because, in practice, the idle power is 7.3
and turning on/off machines might have detrimental effects on the QoS due to the time
necessary to switch the node back on.
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7.1 Constant Number of Users

The first set of experiments was to evaluate the Slack Recovery implementation under
constant number of users. Our 25 web server node cluster supports up to 20,000 Olio users
when the front-end (PHP + nginx) and the back-end (MySQL) are running on the same
machine. We ran the benchmark 9 times changing the number of users on each execution.
The different number of users impacts the CPU cluster utilization rates and the power and
performance optimization space. Figure 15 shows the average power per server for different
number of users.
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Figure 15: Average power per node for different number of Olio benchmark users. The
Slack Recovery exhibits higher power savings when the number of users is higher.

Our results show that Slack Recovery can reduce the power consumption by up to 16%
when compared with the performance Linux governor, and 6.67% when compared with the
Linux ondemand governor. The Slack Recovery increased the response times. However, it
was still able to meet the benchmark SLA constraints as shown in Figure 16.

We observed that the higher power savings are concentrated when the load is higher.
Slack Recovery trades power for performance keeping a minimum performance threshold.
Therefore, it increases the response time for the benchmark (although still meeting the
SLA requirement) and reduces the power consumption. When the load is low, there is
much idleness on the system, and the idle power dominates the total power consumption.

Moreover, the SLA is indirectly taken into account when we set a performance threshold
for the Slack Recovery. The algorithm globally configures the cluster to sustain such
performance requirement. In this way, it does not try to optimize SLAs, and it is possible
that some requests get assigned to a CPU in a lower frequency, but despite that, the system
was able to keep up with the benchmark requirements. If necessary to improve the SLA,
we would need to make the performance requirements tighter, which might impact on the
energy as well.
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Figure 16: SLAs for the Olio benchmark operations. The SLA requirements in 90th per-
centile response time must be 1 second for HomePage and Login; 2 seconds for EventDetail,
PersonDetail, and TagSearch; 3 seconds for AddPerson; and 4 seconds AddEvent. Note
that, for all cases, Slack Recovery could meet these requirements

7.2 Variable Number of Users

The next experiment evaluated the behavior of the algorithm under a variable number of
users. The 37-hour load curve, taken from a real Internet cluster hosting the chat room,
shown in Figure 4 was shrunk to five hours by calculating the average number of users over
a 7-hour time window in order to accelerate the experiments. The maximum number of
users was set to 18,000 (about 90% of the maximum capacity). The maximum follows the
provision standards that reserve some processing capacity to handle any utilization spikes.

Figure 17 illustrates the power consumption of the cluster along the benchmark execu-
tion in this scenario. The results agree with those from the constant number of users, where
the higher power savings are in the region of higher loads. Slack Recovery was able to save
13.1% of the power on average when compared with the Linux performance governor, and
5.6% when compared with the Linux ondemand governor.

We also want to investigate the power behavior for each node. Figure 18 shows the
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Figure 17: Cluster power variation along five hours of benchmark execution. The Lower
Bound is the minimum power consumption that would result by Slack Recovery if the CPU
power when utilization rate is 0% were zero watts

power consumption for the individual nodes along the benchmark execution for the variable
number of users.

The first observation is that three nodes (servers 22, 23, and 24) out of 25 are always
idle, as we can see in Figure 18 . This is related to the assumption that the maximum
load for the trend line curve corresponds to about 90% of the maximum processing power
capacity of the cluster. The algorithm concentrates the processing power to some nodes
while others are placed in idle mode. This fact raises a question about the potential of
adding to the algorithm the capacity of powering on/off nodes. We extrapolate our data
to determine this value.

The extrapolation is done by setting power to zero instead of 7.3 W when the utilization
rate of a node is at 0% in a given time window. This is the Lower Bound showed in
Figure 18, because all idle nodes are considered off.

The Lower Bound corresponds to a reduction in power consumption of 39% when com-
pared to the Linux performance governor, to 30% when compared to the Linux ondemand
governor, and to 23% to Slack Recovery.

On our SM15k cluster, a node takes about five minutes to be powered on. For this
reason, we did not consider the possibility to power on/off nodes at first sight. However,
this possibility is promising and could be feasible if we elaborate our demand predictor by
taking into account the time overhead for power on/off the nodes. We leave the evaluation
of this approach as a future work.

8 Conclusion

This article presents an adaptive power management system for a Web Server cluster
running on a real system. The cluster is composed by state-of-the art high density and
power efficient architecture nodes, the AMD SeaMicro SM15k.

Our system is based on the Slack Recovery heuristic, which relies on the theoretical
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Figure 18: Cluster power variation along five hours of benchmark execution for each server.
Observe that the last three servers are always idle.

concept of Virtual Power States (VPS), and was previously evaluated on a simulation
environment. In order to bring it to a production cluster, we needed to show how VPSs
could be implemented on practice. We did so by presenting new techniques to predict
future demanded performance and a Utilization Control Agent (UCA). Our experimental
evaluation showed that the UCA was capable of maintaining the cluster at the desired
utilization rates.

Our power management system was compared to policies usually deployed in SeaMicro
production systems: Linux performance governors and Linux ondemand governors. The
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experiments were conducted using Olio, a Web 2.0 web-based social calendar extracted from
the CloudSuite Web Server benchmark [14]. We showed that our Slack Recovery-based
system could save up to 16% of the power consumed in the cluster when compared with
the Linux performance governor, and up to 6.67% when compared with Linux ondemand
governor. Finally, we evaluated the potential for power savings that could be brought by
powering on/off cluster nodes, an alternative that may be promising. However, we decided
not to include in this version of our system due to the penalty of turning on/off SM15k
nodes. We plan to include this feature when evaluating our power management system in
future works.
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