
Empirical and Analytical Approaches for Web Server
Power Modeling

Leonardo Piga1, Reinaldo A. Bergamaschi1, and Sandro Rigo1

1Institute of Computing, University of Campinas UNICAMP , Av. Albert
Einstein, 1251 - Cidade Universitaria, 13083-852, Campinas, SP Brazil,

lpiga,rberga,sandro@ic.unicamp.br

Author version of the work published in Journal of Cluster Computing
Received: 28 May 2013 / Revised: 23 January 2014 / Accepted: 21 March 2014

DOI 10.1007/s10586-014-0373-0

Abstract

Power-aware computing has emerged as a significant concern in data centers. In
this work, we develop empirical models for estimating the power consumed by web
servers. These models can be used by on-the-fly power-saving algorithms and are
imperative for simulators that evaluate the power behavior of workloads. To apply
power saving methodologies and algorithms at the data center level, we must first
be able to measure or estimate the power and performance of individual servers run-
ning in the data centers. We show a novel method for developing full system web
server power models that reduces non-linear relationships among performance mea-
surements and system power and prunes model parameters. The web server power
models use as parameters performance indicators read from the machine internal per-
formance counters. We evaluate our approach on an AMD Opteron-based web server
and on an Intel i7-based web sever. Our best model displays an average absolute
error of 1.92% for Intel i7 server and 1.46% for AMD Opteron as compared to actual
measurements, and 90th percentile for the absolute percent error equals to 2.66% for
Intel i7 and 2.08% for AMD Opteron.

1 Introduction

The shift towards an increasing demand in computational resources has forced companies to
build facilities hosting hundreds of thousands of computers called data centers. This comes
at a price of higher operational costs which include the management of these installations,
the electricity costs, and environmental impacts due to the increased power consumption.

1



Energy consumption has emerged as an important concern to the total cost of ownership
(TCO) of data centers [3,12] making energy-efficiency one of the key metrics in the design
of large-scale services. The power consumed by servers dictates the power required by
auxiliary equipment and cooling; consequently, reducing server power impacts directly on
the overall data center power.

Electric utilities and electric installation equipments also impose limits on data center
peak power. To avoid surpassing these thresholds, data center administrators keep a safety
margin when configuring the server units across the facility. This approach is conservative
and usually overestimates the actual power consumed by servers, which rarely operate
at their full capacity [12]. Recent studies have emerged to help maintain an average
power budget, assert peak power constraints, or optimize performance under a power
cap [3, 10, 12, 16]. Most of these techniques require monitoring the power consumption to
apply their optimizations.

Most contemporary high-end processors feature sensors for monitoring energy consump-
tion [27]; however, in commodity processors, which are prevalent in Internet-based data
centers, this is typically not the case. Nevertheless, these processors usually feature event
counters that can be used to estimate power consumption. For example, the second gener-
ation Intel Core microarchitecture uses performance events as proxies of power consump-
tion [31]. The technique is based on reading hundreds of internal performance counters
and on applying activity energy costs to each event to estimate power. Previous studies
have used these probes to indirectly estimate power consumption [4, 6, 11, 17, 18]. Their
usual approach is to derive linear power models based on the usage numbers collected for
the processor sub-components (e.g. caches and branch predictor).

This paper advances the state-of-the-art in this area by presenting power models for
two systems considering all their major parts (i.e. processors, disks, network, memory, and
other motherboard components) and all its software stack (when running as web servers)
for their different CPU core voltage and frequency states (also known as P-states). These
models can be used for commodity systems for on-the-fly power-saving algorithms, and
among other applications, they can also be used by simulators which evaluate the power
behavior of workloads. Our models have been used in a data center simulator to guide
the implementation of power/performance optimization algorithms through voltage and
frequency state assignment [5]. The models are also used in a global power and performance
optimization algorithm.

The power models are developed by using different methods, such as, linear regression,
cluster analysis, and machine learning techniques having hardware events (e.g. number
of instructions, unhalted cycles, cache misses) and system level measurements (e.g. page-
faults, number of context switches) as proxies for power. However, linear power models
based on system measurements and performance counters exhibit issues that need to be
investigated: excess of parameters and non-linear relation among power and the associated
factors (as is the case for I/O bound workloads).

The fewer the number of parameters of a model the faster the power estimation; there-
fore, we prune model parameters by using a correlation-based feature selection (CFS) [13]
algorithm for choosing a subset of them that is most correlated to the power measurements.

2



This approach has reduced the number of parameters preserving accuracy and precision
when compared to a model using all the parameters.

To allow the use of power models based on linear regression on these types of workloads,
we use k-means clustering to group up the performance measurements. Linear regression is
applied on each cluster to dismiss the non-linear relationship among server measurements
and power consumption improving model precision when compared to the other models.
From our knowledge, this is the first work that applies CFS and k-means clustering to
improve linear regression-based power models for computing systems.

The main contributions of this paper are as follows:

• We develop accurate empirical models for estimating the power consumed by web
servers considering all their major parts, such as processors, disk, memory, network,
and other motherboard components.

• The power of processors is characterized for their different P-states and models are
developed for each P-state.

• We apply CFS to prune correlated model parameters and k-means clustering to soften
non-linear relationship among server measurements and power consumption on linear
power models improving their accuracy.

The remainder of this paper is organized as following: Section 2 comments out the
related work. Section 3 introduces power characterization methodology to measure power
consumption of system computers. Section 4 shows the characterization model, Section 5
shows our results. Finally, Section 6 presents the conclusions.

2 Related Work

Linear models are easy to implement, simple to develop and use, fast to run on simulators,
and have shown suitable for CPU-bound workloads [4,6,11,17,18]. Previous works on power
modeling have used Performance Monitoring Counters (PMC) as proxies to estimate CPU
power. Bellosa [4] showed that CPU power correlates to floating point operations, L2
cache references, and memory references. His work was one of the first to propose the use
of PMCs to create an energy-aware scheduler.

Joseph et al. [18] introduced a model capable of estimating the power consumption
for the processor and its sub-components by using PMCs and some heuristics based on
capacitance models. Though accurate, such information might not be available for all
processors. Isci et al. [17] introduced a model for the Pentium IV processor that did not
rely upon circuit-level information. However, their model required more then 15 PMCs,
even though such a large number of counters is not usually available at the same time on
most modern processors.

Contreras and Martonosi [11] used PMCs as inputs to a linear model for an Intel mobile
processor at three voltage and frequency levels. Their model was validated with bench-
marks representing embedded systems. Bertran et al. [6] used PMCs to build power models

3



for contemporary Intel multi-core processors considering all voltage and frequency levels
available. The works listed so far focused mainly on CPU benchmarks, whose applications
fully utilize the processor. Because web servers typically do not characterize CPU-bound
workloads due to the high number of I/O operations performed by such servers, there
is pressure on the shared resources creating non-linear effects among power and system
measurements.

Chen et al. [9] presented performance and power models in a multi-programmed multi-
core environment by addressing the problem of time sharing. The performance model is
based on the cache access pattern. They proposed a power model using neural network
and another using linear regression on CPU performance counters. The reported prediction
error is 3.2% for the former and 3.8% for the later.

Lewis et al. [22] also proposed power models using PMCs to enable dynamic control of
thermal footprint. They modeled the computer using system of deterministic differential
equation in which solution is estimated via time-series approximation. They reported
prediction error between 1.6% and 3.3% for both systems that they evaluated.

In our best web server Power model, the prediction error is 1.92% for the Intel i7
server and 1.46% for the AMD Opteron. Therefore, our proposed technique is simpler and
equivalent in terms of accuracy to the other alternatives [9, 22].

Rivoire and Kozyrakis [29] have compared several high-level full-system power mod-
els. They used a variety of workloads and architectures and also observed non-linear
effects among CPU power and performance measurements due to bottlenecks on shared
resources. We soften the non-linear effects among CPU power and performance by using
k-means clustering. In addition, our power measuring device allows power breakdown for
the individual system components.

Another component that should be taken into account when dealing with web servers
is the hard disk drive. Carrera and Bianchini [8] proposed the usage of disks with multiple
rotation speeds to reduce the energy consumption in data centers. The authors used power
values from data-sheets instead of actually measuring power. They showed that SCSI hard
disks can account for up to 24% of the overall energy consumption of a server. Besides, if
a server is built with a higher number of disks, this fraction can increase to 77%. In our
experiments with web servers, we observe that hard disk power account for up to 20% but
does not exhibit wide variation allowing this power component to be modeled as a constant
value.

Zedlewski et al. [32] developed tool called Dempsey, which can simulate disk operations
in order to estimate the power consumption for a given workload. Their model was built
with real power measurements. However, the chosen modeling parameters were based upon
disk information that might not be available for all classes of hard disks.

In addition to the works above, some authors introduced models for estimating the full
system power consumption. Bohrer et al. [7] studied power characterization of web servers
considering a hypothetical support to DVFS (Dynamic Voltage and Frequency Scaling).
They developed a web server simulation tool which could predict the power consumption
based on web requests and CPU cycles. The adopted workload was generated from LOG
files and static web content. Such workload is not compatible with modern web content,

4



which heavily rely on dynamic content for rendering the pages.

3 Experimental Methodology

This section introduces the power characterization methodology to measure the power
consumption of commodity system computers. The workloads are SPECint2006 and
SPECweb2009. Our main target is web server models, however, we use SPECint2006
to stimulate higher activity level on the CPU. We develop models for two different com-
modity systems: (1) A server with Intel i7 860 processor, 4 GB of memory, and an Western
Digital serial ATA hard disk of 500 GB and 7200 rpm running Ubuntu 9.10 x86. (2) A
server with an AMD Opteron 6168 processor containing 12 cores, 16 GB of memory, and a
Seagate serial ATA hard disk of 1 TB and 7200 rpm with Ubuntu 10.04 x64 as operating
system. All servers run the Apache 2.2.16 web server configured to use threads and PHP
5.3.3 for serving SPECweb2009 [1].

3.1 Measuring Power

There are several methods to measure the power delivered to a given component. Some
approaches use expensive intelligent power supplies or motherboards that have embedded
power meters [20]. In other works [7, 32], multimeters connected in series with the circuit
are used for current measurements. This approach might add noise into the circuit and
may not be suitable for high sampling rates.

We designed a custom-made measuring device similar to the infrastructure described in
other works [25,26]. Piga et al. [26] fully describes our power measurement infrastructure
shown in Figure 1. It uses 15 current transducers (LTS 25-NP [21]) in series with the power
lines which convert current into proportional values of voltage with accuracy of ±0.2% and
linearity of less than 0.1%.

As shown in the Figure 1, our board is installed into the server (plugged into a PCI
slot). ATX, HD, and CPU plugs from the power supply are connected to the board’s
inputs. The output of the transducers are attached to a 16-bit data acquisition system
(National Instruments NI USB–6212 [14]) that is capable of acquiring 400 k samples per
second across all channels. Since 15 channels need to be sampled, the actual sampling
rate is 25 k per second. Each ATX positive wire is connected in series to a transducer.
Given that the voltages of these wires are known upfront, by measuring the currents that
flow through them, it is possible to calculate power consumption, which is the product of
voltage and current. Eventually, the data are read and stored by a monitoring computer
from the acquisition device.

3.2 Collecting System Performance

Hardware events and operating system measurements representing higher level system
activity are collected to be used as proxies for power. Operating system measurements

5



Figure 1: Custom-made power measuring infrastructure designed to collect power on com-
modity computer systems

are important especially for the web server application where many processes of the same
type are running in parallel. Perf [28] utility is responsible for assessing these events.
The models correlate the collected performance rates (events per second) to the power
measurements. Section 5 explains how these metrics affect the power models. The metrics
are as follows:

Instructions retired per second: The CPI (Cycles Per Instructions) value or the
equivalent BIPS (Billions of Instructions per Second) are directly correlated to CPU ac-
tivity level making them important parameters for power models.

Unhalted Cycles per second: This also represents CPU activity level. Higher
values are expected when more functional units are working; hence, affecting CPU power
consumption.

Last level (L3) cache references per second: Under different P-states (i.e. dif-
ferent frequencies) and different workloads, the last-level cache references per unit of time
can change significantly, making it an important parameter in power models.

Last level (L3) cache misses per second: When there is a processor cache miss,
its pipeline stalls affecting power consumption. This parameter also reflects the demand
for memory resources since a miss in the last level cache requires an access to the main
memory.

Page faults per unit of time: This metric captures the demand for memory resources
with low level of temporal locality, reducing the activity level in the node.

Context switches per unit of time: This metric is used to capture the activity level
of the operating system.

CPU migration per unit of time: This counter increases every time a process

6



changes CPUs. When a process switches CPU, the instruction code cache is flushed,
invalidated, and reloaded on the new CPU decreasing the system activity level.

CPU Load: The time share that the CPU spends executing useful processes, that is,
(1.0− tIdle) · 100%, where tIdle is the share of time that the idle process is scheduled. The
idle process is an infinite loop of halt instructions that changes the core to the HALT state
when scheduled by the Operating System.

The disk parameters are collected by reading Linux device block statistics [23]. Table 1
presents the disk events available on the Linux system1.

Table 1: Disk activity parameters
number of reads writes completed time reading time writing
reads merged writes merged I/O in progress time doing I/O
sectors read sectors written time in queue

In order to synchronize the power numbers collected from our power measuring device
with the performance measurements, we simultaneously sample power and performance on
fixed rates (1 second in our experiments). When a given workload execution is completed,
the monitoring software stores the resulting power values and performance measurements
on disk for model generation. Collecting system-level statistics (such as number of page-
faults and context switches) requires only small amount of processing because our sampling
rate is one second. Moreover, measuring performance counters requires executing only one
instruction to start sampling (wrmsr) and other to read the register values (rdpmc) [15].
We measured the overhead of collecting performance statistics while measuring power and
observed that they are negligible corroborating to previous works [6, 17, 18].

4 Characterization Model

Our models are derived using regression techniques on experimental data using system-level
measurements and performance counters as proxies for estimating the power consumption
of the system for each CPU core frequency and voltage state. The following components
contribute to the system power: CPU power; chipset, video board, network device, mem-
ories, and fans (miscellaneous components); and hard disk power. The total power of the
system is computed by simply adding up the estimated power obtained for each component
as shown by Equation 1. Further discussions about the model accuracies and precisions
are done in Section 5.

PTotal = PCPU + Pdisk + Pmiscellaneous (1)

Modern processors support Dynamic Voltage and Frequency Scaling (DVFS), which can
be exploited to optimize power and performance. Each voltage and frequency operating
point represents a so-called power-saving state of the processor. The ACPI [2] is the

1reads/writes merged count the frequency that two 4 kB operations become one 8 kB operation

7



operating system interface to these power-saving states, usually called C-states and P-
states. C0 is the active state and C1 . . . Cn−1 are the idle states. The deeper the state the
higher the savings, at the cost of increasing time penalty for returning to the active state.
When in idle states, the processor normally turns off some of its internal components. In
C0, it is possible to trade-off power consumption for performance by setting the processor
to performance states (P-states) in accordance with the workload being executed.

On Linux, the P-states and their changing policy can be controlled by using the sysfs

utility, which provides information about devices and drivers from the kernel space to
the user space and interfaces to toggle them. There are operating system’s utilities such
as “On-demand Linux Governor” which can control the P-state transitions automatically
based on the workload. There is also the “Userspace Linux Governor” utility which allows
users to control the P-states of the CPU directly. Our models are developed in the context
of the latter and they will be used as part of a global power and performance optimization
policy [5]. The policy will choose the P-States for all CPU nodes and set them for each
time-window.

P-states represent different operating points of frequency and voltage with different
power and performance characteristics. The Intel i7 860 processor has 14 power states
operating from 1.2 GHz to 2.8 GHz. The AMD Opteron processor has 5 power states
operating from 800 MHz to 1.9 GHz. We derived models for CPU (i.e. CPU cores, L1, L2
cache, and L3 cache) by measuring power and performance on each CPU P-state. Thus,
each benchmark run is repeated by setting all cores of the CPU to the same P-state. This
is not a limitation of the work, as the same methodology described in this paper can be
used on a core by core basis.

To develop the models, we run SPECweb2009 and SPECint2006 according to the follow-
ing strategy. For SPECweb2009, seven computers run as clients simulating 500 and 2000
real clients so as to emulate different server loads. This imposes different activity levels on
the server directly impacting its CPU load and network traffic. Since SPECweb2009 bench-
mark is not able to exercise the full CPU capability due to its I/O boundedness character-
istic, SPECint2006 is also executed to stimulate higher CPU activity levels. An instance
of each SPECint2006 program runs in parallel on each core to stress all CPU cores. There-
fore, by combining CPU-bound (SPECint2006) and I/O bound (SPECweb2009) data-sets,
the complete spectrum of CPU utilization is covered.

Figure 2 presents box plots for SPECint2006 and for SPECweb2009 (running with 500
and 2000 users) for all P-states on the Intel i7 server to illustrate the differences on the
CPU Load on each benchmark. The plot shows that SPECweb2009 is not able to achieve
CPU Load values higher than 80% even when considering the outliers. On the other hand,
CPU Load for SPECint2006 is concentrated from 60% to 100% with median around 98%.
Therefore, by combining both benchmarks we can cover all CPU Load spectrum.

Considering the SPECweb2009 benchmark in Figure 2, the outliers for the CPU-
utilization are related to the nature of the web server application. For example, a Deposit
operation is different from a Login operation, resulting in different CPU usages. Moreover,
certain operations are more frequent depending on the operation mix, resulting on the
outliers.

8



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●
●●●●●
●
●●
●
●●
●●
●
●●●●●●●
●
●
●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●
●
●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●
●
●●●●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●●●

●

●●
●●●●●●●●●●
●
●●●●●●●●
●●●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●
●●
●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●
●
●●●

●

●

●

●●
●●●●●●●

●

●

●●

●

●

●
●●●●

●

●●●

●

●●●●●●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●
●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●●
●
●

●●
●●●●●●●
●●
●

●
●

●●●●
●●●

●

●●
●
●

●
●

●

●

●●●
●●●●●

●

●

●●

●●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●●●
●●●●
●
●●●●●
●
●●●●●●

●
●●

●

●●●●●

●

●●●●
●
●●
●●●
●●

●
●
●●●●
●
●

●

●●
●
●●●●●●
●
●●●●●

●
●●●●●●●●●
●
●
●●
●
●●●●
●
●
●●●●●●●●

●

●
●●●●
●●●
●
●●●●●
●●
●●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●
●●●●●●●
●●●
●●●●●
●
●●●●●●
●
●●●●●●
●
●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●●

●●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●
●
●

●

●

●●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●●●●●●
●
●●●
●
●●

●●●●●●●●●
●
●
●
●●●●●
●
●●●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●●
●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●
●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●●●●
●
●

●●●●●
●
●●●
●
●
●
●
●

●●

●●

●●●
●●●●●●●●●●●
●●●●●

●

●●●●●●●●●

●

●

●
●

●

●
●
●
●

●

●●

●

●

●

●

●
●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●
●
●●●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●●
●●●
●

●●

●

●

●

●

●●
●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●
●●

●
●

●

●

●

●

●

●●●

●●

●
●
●●
●●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●
●
●

●

●
●

●

●●

●
●
●

●

●
●●●
●

●
●

●

●●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●●

●●●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●●
●
●●●●●●●
●●●●●
●
●
●
●●●
●
●

●
●●●●●
●
●
●●●

●

●●
●●●●●●●●

●

●

●●

●●

●

●
●

●●

●

●

●●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●
●●

●●●
●
●
●

●

●●

●

●

●●

●

●●

●
●

●
●
●
●

●●

●
●

●

●

●●●

●●

●

●
●

●
●●●●●

●

●
●

●

●●●

●

●

●
●

●

●●
●

●

●●

●
●
●
●●●●●●●●●●
●●
●
●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●
●●●
●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●
●
●●●●
●●●
●
●●●●●
●
●●●●
●
●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●●●
●●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●●

●

●
●
●

●
●
●

●

●
●
●●●●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●●●
●
●●●
●●

●

●●●●
●
●
●
●
●●
●
●
●●●●●●●●●●
●
●
●●●●●●

0

25

50

75

100

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13

P−State

C
P

U
 L

oa
d 

(%
)

Benchmark SPECint2006 SPECweb2009
2000 users

SPECweb2009
500 users

Figure 2: Box plot for CPU load for SPECint2006, SPECweb2009 with 500 users, and
SPECweb2009 with 2000 users on each i7 P-State. Each benchmark stresses different
ranges of the CPU Load

Next, we analyze the power variation on CPU, disk, and miscellaneous components.
Figure 3 shows the power variation in the box plots. The CPU is the critical component
of total power since it has the most contribution to total power and is responsible for the
most power variation; consequently, it requires more detailed power models.

The work described by Zedlewski et al. [32] presents models using disk time reading and
disk time writing to estimate disk power. Following this idea, at first, we developed disk
power models based on the disk usage parameters that estimate the serial ATA disk power

consumption. We used linear-regression to model disk power as Pdisk = a0 +
9∑

i=1

ai · pi

where pis are the model parameters and ais their associated coefficient values shown in
Table 2. This model exhibited an average error of 3.5%

However, we observed that disk power varies very little and the standard deviations are
less than 5% of the mean values for this power component. Figure 3 shows that the disk
power is concentrated between 8.0 W and 9.0 W for the Opteron-based system and 5.0 W
to 6.0 W for the Intel i7-based system. The disk power consumption is responsible for only
10% to 12% of the total power; thus, we model disk power as a constant value. The disk
constant model displayed the same average error of 3.5% obtained with the detailed model
and it is simpler than the linear regression-based disk model. Hence, the constant model
was chosen to be used in the full-system power model.

9



i pi ai
0 (constant) 8.622
1 reads per second 0.002
2 reads merged per second −0.031
3 sectors read per second −9.555 · 10−6

4 time reading per second −54.95 · 10−6

5 writes per second −42.22 · 10−6

6 writes merged per second −70.75 · 10−6

7 sectors written per second 10.18 · 10−6

8 time writing per second −9.289 · 10−6

9 time I/O per second 0.002 · 10−6

Table 2: Disk power model for the AMD Opteron server

We grouped all other computer components such as chipset, video board, network de-
vice, memories, and fans in a power component called miscellaneous components. Following
the same argument used for disk, miscellaneous components power has small contribution
to total power and small variance; hence, we also model this component as a constant value
equal to the average power of all points.

On the AMD Opteron server, the CPU contribution to total power is even higher
compared to disk and miscellaneous component power. Therefore, considering constant
power models for these components has even smaller impact on total model accuracy when
compared to the Intel i7 server.

5 Experimental Results

This section presents the results for our experiments and the evaluation of our power
models. We split up the data-set into training set (50 percent of the points) for building
the models and testing set (remaining 50 percent of the points) for model validation. We
build the power models incrementally starting from a Global Power Model (GPM), which
does not distinguish P-states nor application running on the server and then we apply
enhancements to improve accuracy and precision of the models.

We observe that model generality, excess of parameters, and non-linear relation among
power and performance measurements on I/O intensive applications impose limitations on
the usage of linear regression techniques. We address these issues by developing computer
system power models considering the following: (1) models that consider P-states as nom-
inal parameters and the application that the computer is running, (2) models that make
use of a machine-learning algorithm (CFS) for selecting the parameters most correlated to
power, and (3) models that soften non-linear effects among computer system measurements
and power by using k-means clustering.

10



i7 Opteron

0

50

100

0

50

100

0

50

100

S
P

E
C

int2006
S

P
E

C
w

eb2009
2000 users

S
P

E
C

w
eb2009

500 users

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P0 P1 P2 P3 P4

P−State

Av
er

ag
e 

po
w

er
 (

W
)

1 
se

co
nd

 ti
m

e−
w

in
do

w

Power Component CPU HD Miscellaneous

Figure 3: Average device power measurements for SPECint2006, SPECweb2009 with 500
users, and SPECweb2009 with 2000 on each P-State for AMD Opteron and Intel i7. The
lines represents the minimum and the maximum device power measurement. CPU presents
the most variation and has the most contribution for total power.

5.1 Global Power Model

The first power model, called Global Power Model (GPM), is built using linear regression
having the miscellaneous component and the hard disk power modeled as a constant value
equal to the average power of these power components. We use points from all P-states
and from both benchmarks (i.e. SPECint2006 and SPECweb2009) to develop this model;
hence, we are not distinguishing P-states nor applications. For the CPU power component,
the performance measurements described in Section 3.2 are the dependent variables and
the CPU power the independent variable.

Figure 4 shows the histogram and the cumulative distribution function (CDF) for this
model on the Intel i7 machine. There are outliers which can reach up to 120% of the
absolute percent error (omitted in Figure 4(a)). Even though, most of the points are
concentrated within 50% absolute error. The CDF (Figure 4(b)) clarifies this observation.
The median is about 15% and the 90th percentile is about 20% (dashed line) (i.e. 90%

11



percent of the points display an absolute percent error lesser than 20%).

0.00

0.02

0.04

0.06

0 10 20 30 40 50
Absolute Percent Error (%)

F
re

qu
en

cy

(a) Histogram

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Absolute Percent Error (%)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(b) Cumulative Distribution Function

Figure 4: Full-system power model for Intel i7 using the parameters described in Sec-
tion 3.2. (a) presents the distribution for the absolute percent error, (b) presents the
cumulative distribution function and the 90th percentile of the absolute percent error in
dashed line.

Rivoire et al. [29,30] claims that a power model must have the average for the absolute
percent error lesser than 10% to be consider accurate. Therefore, this model does not fit
this requirement. The remaining of this Section discusses enhancements done on the power
models to improve their accuracy and precision.

5.2 Nominal Parameters and Model Specificity

In Figure 3 we have shown that CPU power characteristics change when P-states change.
Thus considering this parameter as nominal improves precision and accuracy. Hence, the
first improvement that we do in GPM is to consider P-state as nominal parameter. In
this approach, the CPU power is modeled by doing linear regression on the points of each
P-state. This model is called P-State-based Power Model (pSPM). Differently from GPM,
in pSPM, hard disk power and miscellaneous component power are modeled to a constant
value equal to the average power on each P-state.

Figure 5 shows the cumulative distribution function for the GPM (solid line) and the
pSPM (dashed line). The steeper the line, the more accurate the model. Thus, we observe
that by doing a linear regression for each P-state, we improve the precision of the power
models. Figure 5 also shows that for the AMD Opteron server both GPM and pSPM
meet the accuracy requirements (i.e. average for the absolute percent error below 10%).
However, they still do not meet the accuracy requirements for the Intel i7 server.

We have observed in our experiments that if a model is general (using points from
either SPECint2006 or SPECweb2009), it needs more parameters to have similar accuracy

12



AMD Opteron Intel i7

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 0 10 20 30 40
Absolute Percent Error (%)C

um
ul

at
iv

e 
D

is
tr

ib
ut

io
n

F
un

ct
io

n

Power Model Global P−State−based

Figure 5: Comparison between Global Power Model (GPM) and P-State-based Power
Model (pSPM). The latter is more precise, since it has narrower steeper CDF curve.

and precision to a model developed for a specific application. To improve the pSPM,
we consider the application that the machine is running. On web server environment
the workload is known upfront, the power variation is mostly due to variation on the
number of concurrent requests. Thus, we relinquish model generality and focus on an
specialized power model for web server application by considering just measurements done
when running the SPECweb2009. This model is called Web Server Power Model (WSPM).
In fact, we are targeting web server power models on our Data Center simulator; in this
way, we take advantage of a more specific power model to also improve the simulator
performance.

AMD Opteron Intel i7

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 0 10 20 30 40
Absolute Percent Error (%)C

um
ul

at
iv

e 
D

is
tr

ib
ut

io
n

F
un

ct
io

n

Power Model P−State−based Web Server

Figure 6: Cumulative distribution function (CDF) for the absolute percent error for P-
State-based Power Model (pSPM) and Web Server Power Model (WSPM). The latter is
more accurate having a steeper line.

Figure 6 presents the CDF for the pSPM and the WSPM We observe that the general
power model is inaccurate specially on the Intel i7 server. On the other hand, an specialized
power model has improved accuracy reducing the 90th percentile of the absolute percent
error on the AMD Opteron server from 4.4% to 3.5% and on the Intel i7 server from 18.9%
to 4.3%. The WSPM meets the accuracy requirements, since it displays the average for
the absolute percent error below 10%. However, this model requires all the parameters
that were presented in Section 3.2. The next section shows how we reduce the number of
parameters.

13



5.3 Pruning Model Parameters

The WSPM meets the accuracy requirements. However, it requires nine parameters plus
the processor P-state. During our experiments, we observe that many of the performance
measurements are highly correlated with each other. Since we are using linear regression
models, we can eliminate highly correlated parameters preserving the model precision and
accuracy.

Figure 7 shows examples of parameters that are correlated in the Intel i7 server at
the highest frequency state using points from SPECweb2009 and SPECint2006. The line
represents the linear regression between the two axes. The stronger the correlation between
two variables the closer the points follow the line. In this way, on the left hand side, we
notice that CPU load correlates well to unhalted cycles per second; and on the right hand
side, we observe that CPU migrations per second correlates to context switches per second.

0

25

50

75

100

0 5 10 15 20

Unhalted Cycles / s × 10
9

C
P

U
 L

o
a

d
 (

%
)

(a)

0

10

20

30

40

0 2000 4000 6000

CPU migrations / s

C
o

n
te

x
t 

S
w

it
ch

es
 /

 s
×
1
0
3

(b)

Figure 7: Correlation between some of the model parameters. (a) CPU Load versus Un-
halted Cycles per second and (b) Context Switches per Second versus CPU Migration per
second

Consider the WSPM, which uses all proposed parameters in Section 3.2. This model can

be stated as follows: PCPU = a0 +
8∑

i=1

ai · pi where pi’s are the performance measurements

and ai’s their associated coefficient values. Table 3 shows the coefficients calculated using
linear regression for all P-states on both architectures.

This model displays high coefficient of determination (R2 = 0.943), which means that
most of the cases can be explained by the model, but needs all parameters described in
Section 3.2 and shown in Table 3.

In this paper, we use a correlation-based feature selection (CFS) [13] algorithm to
facilitate choosing the parameters mostly correlated to power. The CFS algorithm focus on
the job of feature selection for machine learning through a correlation based approach. The
main assumption is that high quality feature sets (in our case all performance parameters)
carry features that are highly correlated with the class (i.e. power). We believe that CFS is
more appropriate for this task them other methods, such as Principal Component Analysis,

14



Table 3: Coefficients for the Web Server CPU Power Model at each P-state for both
architectures

Server Pstate Cte BIPS
Context CPU Page CPU Unhalted LL Cache LL Cache
Swts./s Load Faults/s Migs./s Cycles/s Refs/s Misses/s

P0 20.77 18.83 6.69E-04 -1.2605 4.97E-04 -2.39E-03 -6.23E-09 2.00E-07 -1.89E-06
P1 18.93 14.52 9.47E-04 -0.4822 2.58E-04 -1.09E-03 -7.28E-09 7.30E-09 1.46E-07
P2 18.41 12.17 1.13E-03 -0.3459 2.64E-04 -1.74E-03 -6.03E-09 -1.26E-08 -8.27E-08
P3 18.40 14.81 8.97E-04 -0.2476 2.42E-04 -2.30E-03 -1.03E-08 1.95E-07 7.75E-07
P4 18.32 13.74 8.25E-04 -0.3675 1.98E-04 -2.54E-03 -8.46E-09 1.81E-07 5.73E-07

Intel P5 18.53 12.88 9.55E-04 -0.2574 2.14E-04 -1.15E-03 -7.81E-09 2.30E-08 5.35E-07
i7 P6 17.91 11.21 9.52E-04 -0.2387 1.80E-04 -2.40E-03 -6.49E-09 8.23E-08 3.58E-07

P7 18.06 12.44 5.90E-04 -0.3628 1.59E-04 -1.32E-03 -7.24E-09 1.50E-07 6.23E-07
P8 17.88 12.03 6.93E-04 -0.2775 1.60E-04 -1.24E-03 -6.56E-09 6.54E-08 3.74E-07
P9 18.03 10.74 7.14E-04 -0.2064 1.41E-04 -2.06E-03 -5.92E-09 6.28E-08 5.92E-07
P10 18.19 11.51 6.09E-04 -0.1187 1.25E-04 -1.70E-03 -7.50E-09 9.94E-08 8.15E-07
P11 18.28 9.59 6.34E-04 -0.1077 8.85E-05 -1.40E-03 -5.82E-09 2.35E-08 1.07E-06
P12 18.08 10.43 4.45E-04 -0.0269 1.08E-04 -8.90E-04 -7.37E-09 9.62E-08 7.91E-07
P13 17.35 9.76 3.44E-04 -0.0715 1.19E-04 -9.05E-04 -6.28E-09 1.09E-07 6.70E-07
P0 46.95 -0.70 1.58E-03 0.4675 -1.03E-05 -3.94E-03 -4.68E-09 9.46E-09 2.32E-07
P1 43.89 -12.46 2.27E-03 0.5750 1.95E-05 -2.34E-03 3.88E-09 2.73E-08 -7.30E-07

AMD P2 42.83 -10.84 2.03E-03 0.4801 7.61E-06 -2.15E-03 3.55E-09 2.45E-08 -6.23E-07
Opteron P3 40.48 4.70 1.35E-03 0.3792 -1.02E-04 -7.51E-04 2.39E-09 -1.54E-08 -3.58E-07

P4 42.28 3.14 1.10E-03 0.3851 4.64E-05 -2.51E-04 -8.52E-10 4.75E-09 -4.93E-07

because it returns a well determined subset of the input parameters (in contrast to other
methods that rely the choice of them to experimenters). Therefore, it reduces the design
space exploration and time analysing the models’ accuracy. From our knowledge, this is
the first work that uses this algorithm to support the choice of performance parameters to
be used as proxies to power.

We develop the Pruned Web Server Power Model (PWSPM) by applying CFS on points
of each P-state, which prune parameters. Then, we apply linear regression using CPU power
as the independent variable and the CFS selected parameters as the dependent variables.
Table 4 shows the coefficients calculated at each P-state for the Intel i7 and AMD Opteron
servers. The algorithm is able to reduce from nine parameters to up to three parameters
at each P-state.

Figure 8 shows the CDF for the WSPM and for the PWSPM (in dashed lines). The
average of the absolute percent error for WSPM is 2.08% for the Intel i7 and 1.81% for the
AMD Opteron. For the PWSPM, the average of the absolute percent error is 2.86% for
the Intel i7 and 2.07% for the AMD Opteron. Therefore, PWSPM uses fewer parameters
having similar accuracy and precision.

5.4 Softening non-Linear Effects

A web server needs to answer thousands of clients in a short period of time; hence, multiple
processes are spawned creating an environment dominated by resource sharing. When using
performance measurements as proxies for CPU power, non-linear relations are observed due
to bottlenecks on shared resources, as noted by Rivoire [29].

Figures 9 and 10 show plots of CPU power versus BIPS and context switches, respec-
tively, for Intel i7 sever at some of its P-states when running SPECweb2009 benchmark.

15



Table 4: Coefficients for the CPU Pruned Web Server Power Model at each P-state for
both architectures

Server Pstate Cte BIPS
Context CPU Page CPU Unhalted LL Cache LL Cache
Swts./s Load Faults/s Migs./s Cycles/s Refs/s Misses/s

Intel i7

P0 24.69 1.98 1.17E-03
P1 18.92 8.93 1.05E-03 -1.24
P2 18.68 6.75 1.13E-03 -0.89
P3 18.47 6.85 1.05E-03 -0.86
P4 18.56 7.88 8.97E-04 -0.93
P5 18.13 7.17 1.00E-03 -0.84
P6 18.03 7.07 8.69E-04 -0.74
P7 17.99 7.33 7.45E-04 -0.69
P8 17.65 7.96 6.95E-04 -0.71
P9 19.49 2.63 9.15E-05
P10 18.81 1.88 4.62E-04
P11 18.38 1.91 4.56E-04
P12 18.27 1.90 4.46E-04
P13 17.71 1.98 4.28E-04
P0 47.83 -1.52 1.03E-03 0.40
P1 47.88 -3.38 7.01E-04 0.67

AMD P2 47.16 0.68
Opteron P3 42.62 0.59

P4 42.48 0.54

AMD Opteron Intel i7

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 0 10 20 30 40
Absolute Percent Error (%)C

um
ul

at
iv

e 
D

is
tr

ib
ut

io
n

F
un

ct
io

n

Power Model Web Server Web Server Pruned

Figure 8: Cumulative distribution function (CDF) for the absolute percent error for Web
Server Power Model (WSPM) and Pruned Web Server Power Model (PWSPM).

The solid lines represent the linear model equation, while the dashed lines represent a
log-log regression.

The non-linear effects are more remarkable at the higher performance states such as
P0, P1, P2, and when running I/O bound workloads (i.e. SPECweb2009). At higher
performance states, the frequency is higher and the CPU is relatively faster than the
I/O devices; hence, it becomes idle more often waiting for I/O. Moreover, the CPU can
handle more requests, increasing the competition for the shared resources, such as memory
controllers and hard disk. Therefore, the CPU operates in bursts of processing creating
non-linear effects among power and performance measurements.

Applying polynomial regression might be difficult when the polynomial order is un-
known. Using logarithm regression results in models that do not take into account “idle
power”, because when no activity is observed in the computer the model yields a power
value that is equal to zero. We use k-means clustering technique [24] to soften the non-linear
effects. This approach approximates a non-linear curve using multiple linear segments cre-

16



P0 P6 P13

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●●●

●●●●

●●

●

●●
●●
●

●

●

●
●●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●●

●
●

●●

●

●

●●●

●

●
●

●

●

●
●

●

●●●

● ●

●

● ●

●
●

●● ●●

●

●

●

●

●

●

●

●

●●

●
● ●
● ●

●

●

●

●● ●●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●
●●
●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●●

●

●

●

●●

●

● ●

●

●

●

●
●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●●
●●●●

●
● ●

●

●

●●●

●●

● ●

●●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●●
●

●

●
●

●

●●
●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
● ●

●
●

● ●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●
●

●

●●

●
●

●

●

● ●●●

●

● ●

●

●
●●

●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●
●

●●●
●●

●
●●

●

●

●

●●

●

●
●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

25

50

75

0 3 6 9 0 3 6 3 6
Billions of Instructions / s

C
P

U
 P

ow
er

 (
W

)

Figure 9: i7 power versus BIPS. The lines represent the linear regression while the dashed
lines represent a log regression.

P0 P6 P13

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●●

●

●●
●●

●

●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●●

●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

● ●

● ●
●
●

●●

●

●

●

●

●

●●
● ●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●● ●

●

●●

●

●●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●● ●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●●
●

●

●

●
●

●●●
●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

20

30

40

50

60

70

4 8 12 16 20 24 4 8 12 16 20 24 28 4 8 12 16 20
Context Switches / s× 103

C
P

U
 P

ow
er

 (
W

)

Figure 10: i7 power versus Context Switches per second. The lines represent the linear
regression while the dashed lines represent a log regression.

ating a different equation with a different slope for each cluster. We use average values of
HD power and miscellaneous components power for each cluster at each P-state to derive
these two components power model.

K-means clustering is a cluster analysis method which targets to divide n observations
into k clusters where each point lies into the cluster with the nearest mean. In a formal
presentation, let X = x1,x2, ...,xn be a set of observations, where each observation is
a d-dimensional real vector, k-means clustering partitions the n observations into k sets
S = S1, S2, ..., Sn (k ≤ n), minimizing the within-cluster sum of squares, where µi is the
mean of points in Si:

17



arg min
c

k∑
i=1

∑
xj∈Si

‖ xj − µi ‖2 (2)

To obtain models with higher accuracy, we need to select the most pertinent set of
variables that is used to create the clusters (based on CFS algorithm), the most suitable
distance function, and the most appropriate number of clusters (i.e. k). This model is
called Cluster Web Server Power Model (CWSPM).

Selecting the most pertinent variables: When using cluster techniques, we observe
that using a large number of attributes (i.e. all the gathered events) yields less precise
models. We attribute this fact to the presence of high correlation among clustering variables
which might overweight one or more parameters [19]. Hence, we apply the CFS algorithm
to obtain a smaller set of variables mostly correlated to power.

Choice of the most suitable distance function between the points: We use the
euclidean distance for the k-means clustering distance function in our models.

Selecting the most suitable number of clusters: To select an appropriate value of
k, we use the sum of the squared errors of prediction (SSE) (also known as an F-test) as a
function of the number of clusters and observe when adding another cluster does not yield
better modeling of the data. This can be done visually by using “elbow criterion” where
small values of k explain most of the variance. At some point the gain drops, resulting in
an angle in the graph where the number of clusters is set.

Figure 11 shows the elbow plots for some P-states on the Intel i7 server where the
circles highlight the number of clusters selected for each P-state (i.e. the location of the
“elbow”). Note that the CFS algorithm may select different sets of variables for each
P-state as shown in Table 4.

Figure 11: Elbow plot for determining the best number of clusters for the Intel i7 server
power model. The circles highlights the number of clusters chosen to partition the data
set.

In order to explain the reasoning behind the usage of the k-means clustering, lets
focus on the case of P0-state of the Intel i7 server. In this case, CFS returned BIPS and
number of context switches per second as the performance statistics that should be used to
estimate the CPU Power. The “elbow criterion” selects k = 3. K-means clustering on the
2-dimensional observations (BIPS and number of context switches per second) is applied.
Figure 12 shows the result of the clusterization for this case.

18



10

20

30

0 3 6 9

BIPS

C
o

n
te

x
t 

S
w

it
c
h

e
s
 /

 s
×
1
0
3

Cluster 1 2 3

Figure 12: Result of k-means clustering for the Intel i7 server at P-0 state after CFS selected
BIPS and number number of context switches per second as the performance parameters
to be used to estimate CPU Power.

Figure 12 shows that the regions are well defined and are making a discretization of the
points based on the system activity. The non-linear effects start to be noticed at higher
activity levels (higher BIPS and higher number of context switches per second), as noticed
in Figure 9 and Figure 10. The k-means clustering algorithm is making a discretization
of the points based on the system activity level, as shown in Figure 12. Therefore, by
applying a different linear-regression for each region, the non-linear effects are softened.

Finally, Figure 13 shows a plot of CPU power versus BIPS for a subset of the data points
for the Intel i7 server for all its P-states and we can see the effect of the discretization made
by the k-means clustering.

Figure 14 shows the comparison among the three models. By using k-means clustering,
we come up with a model that uses fewer parameters and is more accurate than a model
that uses all of the others. Using fewer parameters is important for the simulator, since the
input data could be reduced and is also important on real-time power estimation because
fewer system measurements need to be sampled.

Finally, Figure 15 shows an analysis for each P-state on each architecture. We can see
that all models meet the accuracy requirement (i.e. they display average for the absolute
percent below 10%) at all frequency states. Furthermore, the CWSPM model uses fewer
parameters than the WSPM and is the most accurate at all P-states but P9 on the Intel
i7. Therefore, we select the CWSPM as the best model.

19



P0 P1 P2

P3 P4 P5

P6 P7 P8

P9 P10 P11

P12 P13

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

0 3 6 9 0 3 6 9

0 3 6 9

BIPS

C
P

U
 P

ow
er

 (
W

)

Cluster 1 2 3 4

Figure 13: CPU Power versus BIPS for a subset of the testing set in their respective cluster
for the Intel i7 server. K-means cluster groups up the points and linear regression is applied
on each cluster to soften non-linear effects among power and the parameters.

6 Conclusion

The stunning increase in the demand for Internet services in the last few decades is the
primary reason for the need of increasingly larger data centers, which currently can host
several thousands of computers inter-connected within a single facility. This scenario puts
metrics such as power in more evidence not only for economical reasons but also for en-
vironmental issues. Therefore, reducing the power consumption must be a central role in
the design of contemporary data centers.

This paper presented empirical models for estimating the power consumed by web
servers. The models were validated with SPECweb2009, a state-of-the-art web bench-
mark which characterizes different web applications and contains both static and dynamic
content. We modeled two web servers having different processors and configurations.

20



AMD Opteron Intel i7

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 0 5 10 15 20
Absolute Percent Error (%)C

um
ul

at
iv

e 
D

is
tr

ib
ut

io
n

F
un

ct
io

n

Power Model Cluster Web Server Pruned Web Server Web Server

Figure 14: Cumulative distribution function (CDF) for the absolute percent error for
WSPM, PWSPM, and CWSPM. The latter is the best model in terms of accuracy and
also uses fewer parameters.

AMD Opteron Intel i7

0

1

2

3

4

5

P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13

P−State

Av
er

ag
e 

fo
r 

th
e 

A
bs

ol
ut

e 
P

er
ce

nt
 E

rr
or

 (
%

) Power Component Pruned Web Server Web Server Cluster Web Server

Figure 15: Average of the the absolute percent error for the absolute percent error for
WSPM, PWSPM, and CWSPM.

The web server power measurements were done by a custom-made infrastructure that
enables power breakdown for the individual system components. Hence, we found that the
processor is the dominant component in the server’s power consumption, corroborating the
results presented by others [3]. This result suggests that the processor should be the main
target when devising power-aware optimization algorithms.

We also presented a novel approach for modeling full system power based on CFS algo-
rithm and k-means clustering. This new approach softened non-linear effects among system
measurements and system power improving models accuracy. Our models considered the
different frequency and voltage operating points (P-states) of the processor and took into
account all major components of the server, such as processor, disk, network, memory, and
other motherboard components Our best full-system power models displayed an average
absolute error of 1.92% for the Intel i7 server and 1.46% for the AMD Opteron as compared
to actual measurements, and 90th percentile for the absolute percent error equal to 2.66%

21



for the Intel i7 and 2.08% for the AMD Opteron.

Acknowledgment

We would like to thank the reviewers for their valuable suggestions. This work was partially
supported by FAPESP Grant No. 2010/05389-5.

References

[1] Standard performance evaluation corporation (SPEC). online, 2009. http://www.

spec.org/web2009, Accessed on 17 March 2009.

[2] Advanced Configuration and Power Interface Specification. online,
2011. http://www.acpi.info/spec.htm, Accessed on 29th November 2011.

[3] Barroso, L. A., and Holzle, U. The Case for Energy-Proportional Computing.
IEEE Computer (2007).

[4] Bellosa, F. The benefits of event–driven energy accounting in power-sensitive Sys-
tems. In EW 9: Proceedings of the 9th workshop on ACM SIGOPS European workshop
(2000).

[5] Bergamaschi, R. A., Piga, L., Rigo, S., Azevedo, R., and Araujo, G. Data
center power and performance optimization through global selection of p-states and
utilization rates. Sustainable Computing: Informatics and Systems (2012).

[6] Bertran, R., Gonzalez, M., Martorell, X., Navarro, N., and Ayguade,
E. Decomposable and responsive power models for multicore processors using perfor-
mance counters. In ICS ’10: Proceedings of the 24th ACM International Conference
on Supercomputing (2010).

[7] Bohrer, P., Elnozahy, E. N., Keller, T., Kistler, M., Lefurgy, C., Mc-
Dowell, C., and Rajamony, R. Power aware computing. 2002, ch. The case for
power management in web servers.

[8] Carrera, E. V., Pinheiro, E., and Bianchini, R. Conserving disk energy in
network servers. In ICS ’03: Proceedings of the 17th annual international conference
on Supercomputing (2003).

[9] Chen, X., Xu, C., Dick, R. P., and Mao, Z. M. Performance and power
modeling in a multi-programmed multi-core environment. In Proceedings of the 47th
Design Automation Conference (2010), DAC ’10.

22

http://www.spec.org/web2009
http://www.spec.org/web2009
http://www.acpi.info/spec.htm


[10] Cochran, R., Hankendi, C., Coskun, A., and Reda, S. Pack & cap: adaptive
dvfs and thread packing under power caps. In 44th Annual IEEE/ACM International
Symposium on Microarchitecture (2011).

[11] Contreras, G., and Martonosi, M. Power prediction for Intel
XScale R©processors using performance monitoring unit events. In ISLPED ’05: Pro-
ceedings of the 2005 international symposium on Low power electronics and design
(2005).

[12] Fan, X., Weber, W.-D., and Barroso, L. A. Power provisioning for a
warehouse-sized computer. In ISCA ’07: Proceedings of the 34th annual international
symposium on Computer architecture (2007).

[13] Hall, M. A. Correlation-based feature selection for machine learning. PhD thesis,
University of Waikato, 1999.

[14] Instruments, N. Bus-Powered M Series Multifunction DAQ for USB - 16-Bit, up
to 400 kS/s, up to 32 Analog Inputs, Isolation Data Sheet, 2009.

[15] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B:
System Programming Guide, Part 2. Santa Clara, CA, USA, June 2013.

[16] Isci, C., Buyuktosunoglu, A., Cher, C., Bose, P., and Martonosi, M.
An analysis of efficient multi-core global power management policies: Maximizing
performance for a given power budget. In 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-39 2006) (2006).

[17] Isci, C., and Martonosi, M. Runtime Power Monitoring in High-End Processors:
Methodology and Empirical Data. In MICRO 36: Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture (2003).

[18] Joseph, R., and Martonosi, M. Run-time power estimation in high performance
microprocessors. In ISLPED ’01: Proceedings of the 2001 international symposium
on Low power electronics and design (2001).

[19] Ketchen, D. J., and Shook, C. L. The application of cluster analysis in Strate-
gic Management Research: An analysis and critique. Strategic Management Journal
(1996).

[20] Laros, J., Pedretti, K., Kelly, S., Vandyke, J., Ferreira, K., Vaughan,
C., and Swan, M. Topics on measuring real power usage on high performance
computing platforms. In Cluster Computing and Workshops, 2009. CLUSTER ’09.
IEEE International Conference on.

[21] LEM Components. Current transducer lts 25-NP data sheet, 2008.

23



[22] Lewis, A. W., Tzeng, N.-F., and Ghosh, S. Runtime energy consumption
estimation for server workloads based on chaotic time-series approximation. ACM
Trans. Archit. Code Optim. 9, 3 (Oct. 2012).

[23] Linux Kernel Organization. Block layer statistics – Linux Documentation
Project, 2010.

[24] Lloyd, S. P. Least squares quantization in PCM. IEEE Transactions on Information
Theory (1982).

[25] Lucer, C. D., and Akella, C. Power Profiling for Embedded Applications. White
paper, 2009.

[26] Piga, L., Bergamaschi, R., Azevedo, R., and Rigo, S. Power Measuring
Infrastructure for Computing Systems. Tech. rep., Institute of Computing, University
of Campinas, 2011.

[27] Rajamani, K., Rawson, F., Ware, M., Hanson, H., Carter, J., Rosedahl,
T., Geissler, A., Silva, G., and Hua, H. Power-performance management on an
IBM POWER7 server. In ISLPED ’10: Proceedings of the 16th ACM/IEEE interna-
tional symposium on Low power electronics and design (2010).

[28] Red Hat Inc. Performance counters for linux, 2010.

[29] Rivoire, S., Ranganathan, P., and Kozyrakis, C. A comparison of high-level
full-system power models. In HotPower’08 (2008).

[30] Rivoire, S. M. Models and Metrics for Energy-Efficient Computer Systems. PhD
thesis, Department of Electrical Engineering of Stanford University, 2008.

[31] Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., and Weissmann,
E. Power management architecture of the 2nd generation intel core microarchitecture,
formerly codenamed sandy bridge. In Hot Chips 23 (2011).

[32] Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A., and
Wang, R. Modeling hard-disk power consumption. In FAST ’03: Proceedings of the
2nd USENIX Conference on File and Storage Technologies (2003).

24


	Introduction
	Related Work
	Experimental Methodology
	Measuring Power 
	Collecting System Performance 

	Characterization Model
	Experimental Results
	Global Power Model
	Nominal Parameters and Model Specificity
	Pruning Model Parameters
	Softening non-Linear Effects

	Conclusion

